Modeling of radiation action based on nanodosimetric event spectra.

نویسندگان

  • R Schulte
  • V Bashkirov
  • S Shchemelinin
  • G Garty
  • R Chechik
  • A Breskin
چکیده

Assuming that the number of ionizations events within short segments of DNA-size volumes is a major factor of the biological effectiveness of ionizing radiation, we have designed and manufactured a new nanodosimetric detector counting ionization events in small wall-less gas volumes, which simulate such DNA segments. The detector measures individual ionizations in low-pressure (~1 Torr) propane or any other gas corresponding to a tissue-equivalent cylindrical volume of 2-4 nm diameter and up to 30 nm length. While first nanodosimetric event spectra with protons and alpha particles are being obtained, it is important to develop and test a theory that relates these spectra to biological endpoints such as strand breakage, mutations, and lethal cellular events. This paper describes the two-compartment theory, which is based on the premise that energy deposition in nanometer sites can be broadly divided into two categories: a low-energy deposition compartment comprising events with a total number of 2-5 ionizations, and a high-energy deposition compartment comprising events containing 6-10 ionizations. Under standard biochemical conditions, these events will lead to different biological consequences. The fate of DNA lesions produced by low-energy deposition events will mostly depend on the repair capacity of the irradiated cells, whereas events produced by high-energy deposition events will be irreparable. These events are therefore the biologically most relevant lesions, since they inevitably lead to mutation and cell death.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

First attempts at prediction of DNA strand-break yields using nanodosimetric data.

We present the first results of our attempts to correlate yields of ionisation clusters in a gas model of DNA and corresponding double-strand break (DSB) yields in irradiated plasmids, using a simple statistical model of DNA lesion formation. Based on the same statistical model, we also provide a comparison of simulated nanodosimetric data for electrons and published DSB yields obtained with th...

متن کامل

Nanodosimetry-based quality factors for radiation protection in space.

Evaluation and monitoring of the cancer risk from space radiation exposure is a crucial requirement for the success of long-term space missions. One important task in the risk calculation is to properly weigh the various components of space radiation dose according to their assumed contribution to the cancer risk relative to the risk associated with radiation of low ionization density. Currentl...

متن کامل

Nanodosimetry-Based Plan Optimization for Particle Therapy

Treatment planning for particle therapy is currently an active field of research due uncertainty in how to modify physical dose in order to create a uniform biological dose response in the target. A novel treatment plan optimization strategy based on measurable nanodosimetric quantities rather than biophysical models is proposed in this work. Simplified proton and carbon treatment plans were si...

متن کامل

Comparison of nanodosimetric parameters of track structure calculated by the Monte Carlo codes Geant4-DNA and PTra.

The concept of nanodosimetry is based on the assumption that initial damage to cells is related to the number of ionizations (the ionization cluster size) directly produced by single particles within, or in the close vicinity of, short segments of DNA. The ionization cluster-size distribution and other nanodosimetric quantities, however, are not directly measurable in biological targets and our...

متن کامل

Ion-counting nanodosemeter with particle tracking capabilities.

An ion-counting nanodosemeter (ND) yielding the distribution of radiation-induced ions in a low-pressure gas within a millimetric, wall-less sensitive volume (SV) was equipped with a silicon microstrip telescope that tracks the primary particles, allowing correlation of nanodosimetric data with particle position relative to the SV. The performance of this tracking ND was tested with a broad 250...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics

دوره 17 Suppl 1  شماره 

صفحات  -

تاریخ انتشار 2001